Источники питания

PSP-603

Программируемые импульсные источники питания постоянного тока серии PSP GOOD WILL INSTRUMENT CO., LTD.

- Выходное напряжение до 60 В, выходной ток до 10 А, макс. мощность 210 Вт
- Дискретность установки параметров: 10 мВ, 2 мА
- Установка параметров при отключенной нагрузке
- Индикация тока и напряжения на большом ЖК дисплее
- Защита от перегрузки, перенапряжения и перегрева
- Интеллектуальная регулировка скорости вращения вентилятора охлаждения
- Функция блокировки клавиш лицевой панели
- Программирование выходных параметров в абсолютных и относительных (%) величинах
- Высокий КПД
- Интерфейс RS-232

Технические данные:

ехнические дан модель	ВЫХОДНОЕ НАПРЯЖЕНИЕ, В	ВЫХОДНОЙ ТОК, А	ДИСКРЕТНОСТЬ УСТАНОВК
PSP-603 PSP-405 PSP-2010	060 040 020	03,5 05 010	20 MB; 2 MA 10 MB; 2 MA 10 MB; 5 MA
ХАРАКТЕРИСТИКИ	ПАРАМЕТРЫ	ЗНА	НЕНИЯ
СТАБИЛИЗАЦИЯ НАПРЯЖЕНИЯ	Нестабильность Уровень пульсаций	При изменении напряжения питания: ≤ 0.05 % При изменении тока нагрузки: ≤ 10 мВ ≤ 20 мВ _{ср.хв.}	
СТАБИЛИЗАЦИЯ ТОКА	Нестабильность Уровень пульсаций	При изменении напряжения питания: $\leq 0.05~\%$ При изменении напряжения на нагрузке: $\leq 5~\text{MA}$ $\leq 10~\text{MA}_{\text{ср.хв.}}$	
УСТАНОВКА ВЫХОДНЫХ ПАРАМЕТРОВ	Дискретность установки Погрешность установки	Смотри таблицу выше $\pm (0.05~\% + 3~\text{ед. счета})~(\le 40~\text{B})$ $\pm (0.05~\% + 4~\text{ед. счета})~(\le 60~\text{B})$ $\pm (0.1~\% + 5~\text{ед. счета})~(\le 5~\text{A})$ $\pm (0.3~\% + 10~\text{ед. счета})~(\le 10~\text{A})$	
ДИСТАНЦИОННОЕ УПРАВЛЕНИЕ	Интерфейс	RS-232	
ОБЩИЕ ДАННЫЕ	Напряжение питания Габаритные размеры Масса Комплект поставки	115 В/230 В \pm 15 %, 50/60 Гц 225 \times 100 \times 305 мм 4 кг Шнур питания (1), GTL-104 (1)	